Mål og mening med risikoanalyser Noen refleksjoner

Terje Aven University of Stavanger, Norway

ESRA 10. Mai 2012

Third party risk

Neighbours

Hydrocarbon releases, explosions

LNG plant Stavanger, Norway

Risk analysis \longrightarrow What is acceptable risk

• ----- $p_0 = 1 \times 10^{-4}$

• ----- $p_0 = 1 \cdot 10^{-4}$

Ρ

Is the risk acceptable ?

Ρ

What is the «true» probability/risk?

 If you believe in a true risk this approach fails as accurate risk estimation cannot be assured

If we drop the idea of a «true» probability/risk

Ρ

 We need to see beyond the number P

John offers you a game: throwing a die

What is your risk?

Risk

(C,P): • 6 5/6

• -24 1/6

Is based on an important assumption – the die is fair

"Background knowledge"

Assumption 1: ... Assumption 2: ... Assumption 3: ... Assumption 4: ...

- Assumptions
- Data
- Models
- Expert opinions

Assumption 50: The platform jacket structure will withstand a ship collision energy of 14 MJ Assumption 51: There will be no hot work on the platform Assumption 52: The work permit system is adhered to Assumption 53: The reliability of the blowdown system is p Assumption 54: There will be N crane lifts per year

Assumption 100: ...

• • •

...

Model: A very crude gas dispersion model is applied

Uncertainties are concealed in K Not sufficient to look at P

Probability

Relative frequency Interpretation P_f

Jugdmental/ knowledge-based probabilities P

The perfect storms and black swans metaphors

"Perfect storms": to describe stochastic uncertainty (variation) and phenomena that are well-understood

- Accurate predictions can be made
- Design criteria for wave loads for offshore installations
- Health and traffic applications

Nassim N. Taleb

Known unknowns

Unknown unknowns ("black swans")

- Risk assessment should not only produce probability numbers
- Also need to describe the knowledge and lack of knowledge
- Focus on black swans, ...

Uncertainty factors (assumptions)

How important are they?

- sensitivity
- uncertainties

Uncertainty factor importance

Degree of sensitivity	Significant	9	3	2,3
	Moderate	8	6	1,5
	Minor	7		
		Minor	Moderate	Significant
	Degree of uncertainty			

The adjusted approach

P
EProbabilities
Expected valuesU
FUncertainty factor
assessment

Risk description

This approach cannot be justified

Risk-based decision making

Risk-informed decision making

Conservative estimation

Risk assessment

- Source identification
- Cause analysis
- Consequence analysis
- Risk description
- Risk evaluation

Risk analysis process

The risk analysis process

Risk analysis

- Understanding (phenomena, events, causes, consequences, variation, ...)
- Describing risk

Describing risk

- Probability and statistics
- Risk descriptions (PLL, FAR, IR, risk matrices, F-N curves, etc).
- + K ...

QUANTITATIVE RISK ASSESSMENT

The Scientific Platform

TERJE AVEN

Aven, T. (2012) The risk concept. **Historical and recent** development trends **Reliability Engineering and** System Safety, 99, 33-44.

Uncertainty factors Degree of uncertainty / Strength of background knowledge

Significant uncertainty

One or more of the following conditions are met:

- The phenomena involved are not well understood; models are non-existent or known/believed to give poor predictions.
- The assumptions made represent strong simplifications.
- Data are not available, or are unreliable.
- There is lack of agreement/consensus among experts.

Minor uncertainty

All of the following conditions are met:

- The phenomena involved are well understood; the models used are known to give predictions with the required accuracy.
- The assumptions made are seen as very reasonable.
- Much reliable data are available.
- There is broad agreement among experts.

Moderate uncertainty

Conditions between those characterising significant and minor uncertainty, e.g.:

- The phenomena involved are well understood, but the models used are considered simple/crude.
- Some reliable data are available.

Uncertainty factors Sensitivity

Significant sensitivity

Relatively small changes in base case values needed to alter conclusions (e.g. exceedance of risk reference values).

Moderate sensitivity

Relatively large changes in base case values needed to alter conclusions.

Minor sensitivity

Unrealistically large changes in base case values needed to alter conclusions.