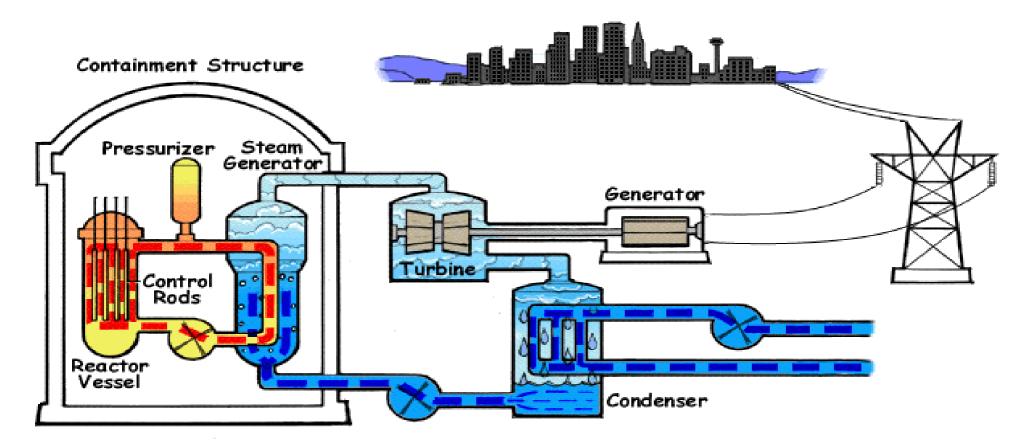


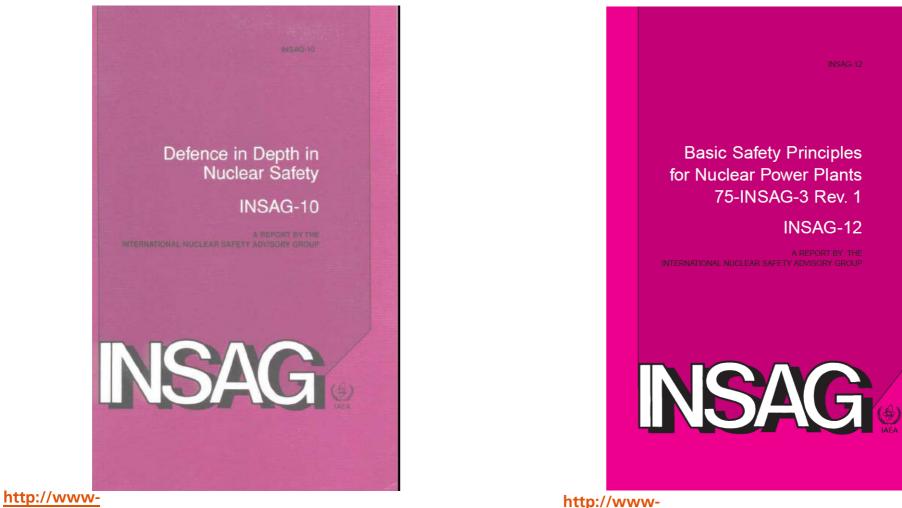
Nuclear Safety – Defence In Depth

Jerzy Grynblat Nuclear Business Director

Working together for a safer world


Nuclear Safety – Defence In Depth

Content


- Nuclear Power Plant technology
- Nuclear safety objectives and principles
- Defence In Depth
- Challenges that may influence the safety barriers countermeasures
- Risk Informed Applications

Pressurized Water Reactor (PWR)

- Most common NPP type in the world
- Primary loop (radioactivity) and secondary loop (no radioactivity)

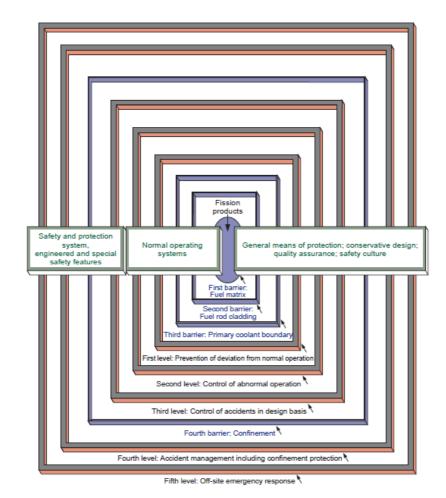
IAEA Safety Guides

pub.iaea.org/MTCD/publications/PDF/P082_scr.pdf

pub.iaea.org/MTCD/publications/PDF/Pub1013e_web.pdf

Nuclear safety objectives and principles

Objectives	nuclea	neral r safety ective	p	Radiation protection objective	Technical safety objective						
Fundamental safety management principles	ent Safety culture		of	sponsibility operating ganization	Regulatory control and verification						
Fundamental defence in depth principles	Defe	nce in pth	Accident prevention		Accident mitigation						
General technical principles	technical engineering assurance (3.3.		urance (3.3.2) sessment (3.3.3	((((()))))))))))))))	Safety assessment and verification (3.3.6)	prot	liation ection .3.7)	Operating experience and safet research (3.	e y	Operational excellence (3.3.9)	
Specific principles	Siting	Des	ign	Manufacturing and construction	Commissioning	Operation		ident gement	Decommis sioning	S-	Emergency preparedness


FIG. 1. INSAG safety objectives and principles for nuclear plants. The numbers refer to the relevant subsections in Section 3.3.

Defence In Depth (DiD) - Overview

Strategy	Accident pre	vention		Accident mitigati	on		
Operational state of the plant	Normal operation	Anticipated operational occurrences	Design basis and complex operating states	Severe accidents beyond the design basis	Post-severe accident situation		
Level of defence in depth	Level 1	Level 2	Level 3	Level 4	Level 5		
Objective	Prevention of abnormal operation and failure	Control of abnormal operation and detection of failures	Control of accidents below the severity level postulated in the design basis	Control of severe plant conditions, including prevention of accident progression, and mitigation of the consequences of severe accidents, including confinement protection	Mitigation of radiological consequences of significant releases of radioactive materials		
Essential features	Conservative design and quality in construction and operation	Control, limiting and protection systems and other surveillance features	Engineered safety features and accident procedures	Complementary measures and accident management, including confinement prodection	Off-site emergency response		
Control	Normal operat activities	ling	Control of accidents in design basis	Accident management			
Procedures	Normal operat procedures	ling	Emergency Ultimate part of emergency operating procedures				
Response	Normal operating Engineered Special Off-site emergen safety features features preparati						
Condition of barriers	Area of specifi fuel design lin	ied acceptable iit	e Fuel Sever failure fuel damag	melt fuel	Loss of finement		
Colour code	NORMAL		POSTULATED ACCIDENTS		EMERGENCY		

IAEA INSAG 12

Defenece In Depth – Physical Barries

Nuclear fuel

- One fuel pellet 800 liters of diesel fuel
- One reactor core ~ 15 million fuel pellets piled in long pipes assembled to fuel elements
- Burnout
 - Energy content decreases during operation
 - Fuel elements are in operation for about 5 years
 - PWR change of 25% every year
 - BWR change of ~17% every year
 - Fuel elements are rearranged during refuelling to optimise the core layout (safety and fuel efficiency)

Defence in Depth

 Applied to all safety activities, whether organizational, behavioural or design related, ensures that they are subject to overlapping provisions, so that if a failure were to occur, it would be detected and compensated for or corrected by appropriate measures.

DiD 5 levels

- The aim of the first level of defence is to prevent deviations from normal operation, and to prevent system failures. This leads to the requirement that the plant be soundly and conservatively designed, constructed, maintained and operated in accordance with appropriate quality levels and engineering practices, such as the application of redundancy, independence and diversity.
- The aim of the second level of defence is to <u>detect and intercept deviations</u> from normal operational states in order to prevent anticipated operational occurrences from escalating to accident conditions. This is in recognition of the fact that some PIEs are likely to occur over the service lifetime of a nuclear power plant, despite the care taken to prevent them.

DiD 5 levels

 For the third level of defence, it is assumed that, although very unlikely, escalation of certain anticipated operational occurrences or PIEs may not be controlled by a preceding level of defence, and a more serious event may develop. These <u>unlikely events are anticipated in the design basis</u> for the plant, and inherent safety features, fail-safe designs, and <u>additional equipment and procedures are provided</u> to control their consequences and to achieve stable and acceptable conditions following such events.

- The aim of the fourth level of defence is to <u>address severe</u> <u>accidents in which the design basis may be exceeded</u> and to ensure that <u>radioactive releases are kept as low as practicable</u>. The most important objective of this level is the <u>protection of the</u> <u>confinement function</u>.
- The fifth and final level of defence is aimed at <u>mitigation of the</u> <u>radiological consequences of potential releases of radioactive</u> materials that may result from accident conditions. This requires the provision of an adequately equipped emergency control centre, and plans for the on-site and off-site emergency response.

Diversity: Systems that employ different principles of operation.

Redundancy: Multiple components and systems to guard against individual failure.

Independence: System and components are not interdependent and are physically separated.

Failsafe: Failure results in the component adopting a safe mode.

Testable: Can be tested without disrupting operations or with redundancy so that one system can be withdrawn for testing.

Challenges that may influence the safety barriers -Countermeasures

Decline in Safety culture

- It is not what we write and/or say, it is the matter of what and how we do things
- Independent Safety Review
- ALARA / ALARP-principles
 - ALARA = As Low As Reasonably Achievable
 - ALARP = As Low As Reasonably Practicable

Inproper status monitoring of the safety systems and components

- Maintenance
- Status control and verification
- Risk Monitoring

Limited resources, optimisation/prioritization

• Risk Inform (RI) Decision Making, RI Applications

Initiating events influencing several barriers simultaneously

- Safety analysis, deteministic and probabilistic
- Physical independence, diversity

• Comprehensive safety analysis ©Lloyd's Register Consulting

Challenges that may influence the safety barriers -Countermeasures

Risk Informed applications

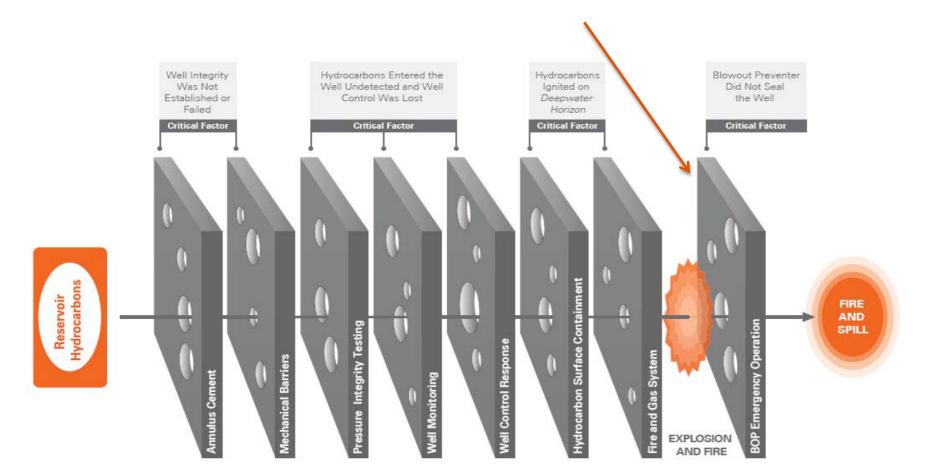
- Risk Monitor for on-line risk monitoring
- Risk Monitor for maintenance risk evaluation
- Mitigation Systems Performance Indicators (MSPI) for safety supervision
- MSPI for plant internal use (to improve safety and reliability)

RiskSpectrum RiskWatcher

ONLINE PLANNING WHATIF RiskSpectrum Risk 切换语言: [中文 English]			Unit 1 💌	Model Managemen	nt User Manageme	nt Settings Logout Welcome Logged as admin
OperatorScreen RiskGraph	InputOverview	DefenceInDepth	Importance	TestTimes	Report	
Define Entire Chart One Year One Mo		y One Hour		Cumulative Risk	AOT: 58 (lays and 23 hours
— Online 1.00E-01						
1.00E-02					- CDF	Risk Level -LERF
1.00E-04	Risk on	2011-07-07 15:00	9.50E-05 - Online		Risk	Risk
May 23 May 30 Jun 6	jun 13	Jun 20 Jun Oct '11	27 Jul 4	Jul 11 Jan '12	CDF	LERF

Defence in Depth

Operational requirements										
Feedw	vater s	upply	Support Systems							
Emergency Feed Water Main Feed Water System System		AC Power System				e Water tem				
EFW-1 EFW	1-2		ACP-1 ACP-2 ACP-3	CCW-1	CCW-2	SWS-1	SWS-2			


	Safety requirements										
	Core C	ooling		Residual Heat Removal							
	Emergency Core Emergency Feed Cooling System Water System			ncy Core System		ncy Feed System	Residual He Sys	at Removal tem			
ECC-1	ECC-2	EFW-1	EFW-2	ECC-1	ECC-2	EFW-1	EFW-2	RHR-1	RHR-2		

Equipment out of Service

Id	Description
ACP-DG01	Diesel generator in standby supply
CCVV-HX01	Component Cooling Water System
MEVV-PM01	Main Feed Water System pump 1
MEVV-PM02	Main Feed Water System pump 2
MEVV-VCO1	Main Feed Water System isolation
RHR-VC01	Residual Heat Removal System ch

RM application in O & G

The blowout preventer (BOP) is often the final line of defence to isolate the wellbore prior to and after the explosions and the fire.

RiskWatcher for BOP, example interface

							/
eration Planning	Operators Screen - den 14	4 februari 2012	1				(
Operators Screen	Plant Operating Modes	Env	vironmental	Factors			
Risk Graph	Note Description		Note Description Well pressure				
Input Overview	Drilling mode Well workover operations with the tree removed		The expect pre	essure is less than 5,000 ps essure is 5,000 psi or greate			
Risk Evaluation							
Defence-in-Depth	Defence-in-Depth		Equ	ipment out	of Service		
Operating Modes	Description BOP Top	Status	Note I	D JAP_CLXXU-ANN	Description	State	
System Configurations							
Equipment out of Se	BOP seal functions BOP annular preventer seal functions						
Environmental Factors	Systems Lower Annular seal function Systems Upper Annular seal function BOP pipe ram seal functions						
Test Times	Systems Lower Pipe Rams close function Systems Middle Pipe Rams close function						
Equipment Importance							

Here the upper annular preventer is totally out of service (red), the lower annular preventer is working (green), and we see that the defence in depth level has changed for the BOP annular preventer function (yellow).

BOP Risk Model software (RiskWatcher)

http://www.youtube.com/watch?v=UkLa1x6amHQ

BOP Risk Model - Solutions

- Gives a clear understand of the seriousness of the issue within minutes;
- Each model is:
 - Custom built to the specific BOP;
 - Custom built to specific country waters;
 - Custom built to company rules, regulations and operational procedures;
 - Utilises proven software for risk analysis.
- Risk assessment is fast, logical and based on sound engineering principles;
- It gives consistent, objective decisions 100% of the time;
- Historical data is collected;
- Winner of EIC Award for Supply Chain Excellence, 2013;
- Engineering Innovations Meritorious Award, 2014.

Jerzy Grynblat Nuclear Business Director Lloyd's Register Consulting T +46 70 773 06 33 E jerzy.grynblat@lr.org

Lloyd's Register Consulting www.lr.org/consulting

Working together for a safer world

Lloyd's Register and variants of it are trading names of Lloyd's Register Group Limited, its subsidiaries and affiliates. Copyright © Lloyd's Register Consulting. 2014. A member of the Lloyd's Register group.