Classification: Internal

Status: Draft

Risk aspects related to BOP testing

ESRA seminar 5 March 2009

Thor Paulsen

BOP – BlowOut Preventer

- Safety critical barrier element in drilling operations
 - Strict requirements to reliability
- Must be capable of terminating potential flow from the well during all activities in a drilling operation
 - BOP's are therefore built up with several packing devices (pipe rams, annular preventers, shear/seal ram) to terminate flow from the well with different drillpipe sizes and without drillpipe through the BOP
- Must be possible to circulate fluid in/out of the well with BOP closed
 - BOP's are therefore equipped with kill and choke lines

StatoilHydro

BOP testing requirements

- Requirement to test BOP is:
 - To section design pressure prior to drilling out of a casing
 - Thereafter function test each 7 days
 - Leak test to section design pressure each 14 days
 - All elements are tested, including valves on kill and choke lines, on regular 14 day test, except the shear seal ram which is tested before drilling out of a new casing.

Test pressure

- BOP's are as a minimum tested to maximum estimated pressure for the section to be drilled, i.e. max pore pressure less gas gradient to surface/seabed.
- Test pressure vs max pressure BOP exposed to during incidents
 - Review of 20 kick incidents shows that max pressure below BOP is far less than the pressure that the BOP has been tested to

How does the safety level vary?

Consequense of failure

- In case of a failure of BOP during test, the BOP need to be pulled for repair.
 - Before pulling for repair, the well must be secured. I.e. two barriers must be established.
 - Barriers that are established must be tested which again exposes the BOP to pressure loads.
 - -What is the risk level during this operation?
 - This is very dependent on the status in the well at the time of failure;
 - cased hole?
 - open hole?
 - reservoir exposed?
 - And dependant on type of BOP failure

Illustrative example

Complex picture

- Probability for "provoking" a BOP failure during test?
- Probability for failure of BOP during kick?
- Probability for kick?
- What type of BOP failure?
- Of all registered BOP failures, how many failures can be related to "high pressure" test (that would not have occurred if pressures were low)?

Summary

- Complex subject that need more investigation
- Is it at all possible to calculate risk level and compare with standard testing requirements?
- Is this approach worth looking further into?