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AWORLD
THAT COUNTS

MOBILISING THE DATA REVOLUTION FOR SUSTAINABLE DEVELOPMENT

DATA
REVOLUTION
GROUP
The UN Secretary General's Independent Expert Advisory Group on a \\«“; 4«”‘/

Data Revolution for Sustainable Development S —
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COMMITTED TO
IMPROVING THE STATE
OF THE WORLD

Big Data, Big Impact:
New Possibilities for International Development

A flood of data is created every day. (...)

(We) are beginning to realise the potential for
channelling these torrents of data into actionable
information that can be used to identify needs,
provide services, predict and prevent crises.
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Navigating the next industrial revolution .

Revolution Year Information

1 1784 Steam, water, mechanical production equipment

2 1870 Division of labour, electricity, mass production
r 3 1969 Electronics, IT, automated production

W 4 ? Cyber-physical systems
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Die
Bundesregierung

DIE NEUE
HIGHTECH
STRATEGIE

Innovationen fir Deutschland

Industrie 4.0

Die Wirtschaft steht an der Schwelle zur vierten industriellen Revolution. Durch das Internet getrieben, wachsen reale
und virtuelle Welt immer weiter zu einem Internet der Dinge zusammen. Die Kennzeichen der kiinftigen Form der
Industrieproduktion sind die starke Individualisierung der Produkte unter den Bedingungen einer hoch flexibilisierten
(GroRserien-)Produktion, die weitgehende Integration von Kundinnen und Kunden sowie Geschéaftspartnerinnen und
-partnern in Geschafts- und Wertschopfungsprozesse und die Verkopplung von Produktion und hochwertigen
Dienstleistungen, die in sogenannten hybriden Produkten miindet. Die deutsche Industrie hat jetzt die Chance, die

vierte industrielle Revolution aktiv mitzugestalten. Mit dem Zukunftsprojekt Industrie 4.0 wollen wir diesen Prozess

unterstitzen.



Digital is the main
reason just over half of
the companies on the
Fortune 500 have

disappeared since the
year 2000

Pierre Nanterme
CEO of Accenture




Statistics plays a central role in the analysis of big data.

“That the dry world of statistics is becoming a
battleground of ideas and commercial interests,
affecting the future of people around the world,
may shock some.”

Technology

The
Economist




Often, it is not enough to crunch data!



Without the right analytical methods, more
data just gives a more precise estimate of the
wrong thing

The
Economist



OOOOOOOOOO

JO BOWMAN

Analytics: are we data rich
and insights poor?

RESEARCH WORLD | January/February 2015
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Model-based methods exploit knowledge
and structure in the new data,
To understand, discover, predict, control,

quantifying uncertainty.



TRACKING UNEMPLOYMENT
USING MOBILE PHONE DATA

Toole, J. L., Lin, Y. R., Muehlegger, E., Shoag, D., Gonzalez, M. C,,
& Lazer, D. Journal of The Royal Society Interface, 2015

* Real time estimate of changes in unemployment, at
arbitrarily fine spatial scale, using existing mobile
phone data.

* Ahead traditional indicators in European countries




Data - mobile phone calls:
e caller ->receiver
* |ocation
* time

Training: Case of a large factory closing down
« Compare individual signal before vs. after closure
* Find special features of the signal when jobs are lost

Calibrating: A region with official unemployment estimates
 Match “lost-job” mobile phone signal to

unemployment rates

Predict: Current (and near future) unemployment
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Hindcast Nowcast Forecast

time
NOW

future

a statistical calculation determining probable present conditions

past
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Personalised solutions

Forecasting the transient

HYDRO




e personalised marketing,

* personalised products,

* personalised prices,

* personalised risk assessments,

» personalised fraud assessment,

* personalised screening,

* personalised therapy,

* personalised patient safety,

* individualised maintenance schemes,
* individualised communication

Personalised solutions




Forecasting the transient

High frequency data allow to measure
processes in time while they are not in a stable
situation, not in equilibrium.

* Predict the dynamics, the next events.

* Optimal intervention while real time
monitoring.

e Causal understanding of the factors which
affect the process.



Move away from operations based on average and typical
behaviour towards individualised actions.

Intervene in real time and while it happens, to improve
performance and gain control.



e data must be integrated with soft and hard substantive
Industrial knowledge;

e industrial decisions and risk assessment require a
precise quantification of the uncertainty inherent in

predictions and segmentations;

e Interventions require an understanding of the causal
mechanisms behind behaviours.

mmm) MODEL BASED ANALYTICS



6 Innovation Objectives

Structured Personalised Personalised Sensor Forecasting Distributed
personalised healthcare fraud based power decision
marketing safety detection monitoring systems making

BigInsight



Structured
personalised

marketing



1. Personalised communication

Multiple communication channels with customers / users

To and from
Determine for each customer, the best channel

Challenges:
* heterogeneous data, from demography to browsing
history, from text to phone calls
* high dimensional (factor selection)
= counterfactual



2. Personalised marketing

* Favour specific customer behaviour (buy, loan, no churn, ...)
* Interventions: recommend, change price/product, new product ...
 Model customer behaviour,

* Exploit known/latent relations between customers (network)
* Simulation: play interventions, observe behaviour in silico

* Challenges:
" heterogeneous data, incl. ratings and network topology
* high dimensional (factor selection)
= counterfactual
" real time
" prediction, as early as possible
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GROWTH is change



GOAL:
How does the network grows?
" Understand dynamics
" Predict growth
= Help marketing = interventions

 Some information on people
e Transactions

 Non-identifiable data



Personalised
healthcare

safety



1. Personalized cancer statistics

* Cancer registries publish survival statistics by gender, stage,
cancer site

* New clinical registries include treatment and later events.

* Can be linked to other registries on comorbidity, income,
education.

* Produce survival predictions using all such individualized
information

* Challenges:
" heterogeneous data
* high dimensional (factor selection)
" counterfactual
= prediction, with uncertainty

Cases and data from Kreftregisteret



2. Personalized cancer treatments

 Cancer is a collection of different diseases, that call for
different treatment.

* Genomic profile determines which treatment works.

* There are extremely many treatment combinations and plans.

* Produce a computer model of cancer, adaptable to each
genome.

* Simulate all treatments and determine the optimal for each
patient

* Challenges:
= Approximating complexity
= high dimensional (factor selection)
= Fast computation

= prediction, with uncertainty
Cases and data from OUS



3. Healthcare safety management

* Electronic Health Records

* Predict harms to patients (or efficiency of hospitals) from EHR,
hospital data and many other variables

* Understand causes and thus allow prevention or mitigation

* Challenges:
= Approximating complexity
" high dimensional (factor selection)
= Real time computation
= prediction, with uncertainty

Cases and data from DNV-GL and OUS
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e detection
e prediction




4. Telecom data for epidemics control

* Infectious diseases spread by social mixing and mobility

* Mobile phone geo-temporal information allows to observe
movements of people and contacts.

* Model epidemic spread based on estimated mobility

* Optimise vaccination strategies

* Challenges:
" approximating complexity
* high dimensional data
" real time computation
" uncertainty

Cases and data from Telenor and NIPH



Impact of human mobility on the emergence of dengue
epidemics in Pakistan

Amy Wesolowski®®, Taimur Qureshi‘, Maciej F. Boni®®, Pal Roe Sundsey®, Michael A. Johansson®f, Syed Basit Rasheed?,
Kenth Engo-Monsen©, and Caroline O. Buckee®"""

*Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115; BCenter for Communicable Disease Dynamics, Harvard T. H.
Chan School of Public Health, Boston, MA 02115; “Telenor Research, Telenor Group, N-1360 Fornebu, Norway; doxford University Clinical Research Unit,
Wellcome Trust Major Overseas Programme, Ho Chi Minh City, Vietnam; *Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University
of Oxford, Oxford OX3 7FZ, United Kingdom; fDivision of Vector-Borne Diseases, Centers for Disease Control, San Juan, Puerto Rico 00920; and 9Department
of Zoology, University of Peshawar, Peshawar 25120, Pakistan

 dengue data from a large outbreak in Pakistan in 2013

GOAL:
Epidemiological model of dengue virus transmission based on

climate and mobility data from ~40 million mobile phone
subscribers.



Mobile phone-based mobility
estimates predict the
geographic spread and timing of
epidemics

* Fine-scale dynamic risk maps for
epidemic preparedness.



What data?

* Mobile phone subscribers location (nearest phone
tower).

* Daily locations and movements were aggregated to
measure travel between 356 small areas



Personalised
fraud
detection



1. Ensemble methods for personalised fraud detection

* Develop new approach to fraud/money laundering detection
 Depends on many covariates, and their interactions
e Combining results from many methods, to exploit each strength.

* Challenges:
* Merging of different predictions
* high dimensional data
* few known cases
» efficient computation
* uncertainty

Case and data from Skatteetaten, DNB, Gjensidige, NAV.



2. Network analysis for personalised fraud detection

* Fraudisviral, spreading directly or indirectly from one
fraudster to others.

* Network relations between persons, businesses and groups
thereof.

* Understand how these networks evolve over time

* Exploit for better fraud forecasts

* Allow other preventive interventions

* Challenges:
" approximating complexity
* high dimensional data
* Multiple relations
" uncertainty

Case and data from Skatteetaten, DNB, Gjensidige, NAV.



Forecasting
power

systems



2. Optimal power match for smart grid

 The smart grid combines the optimization of use and production
of electricity with forecasted prices.

* In planning each device’s demand for electricity, the future state
of the system must be predicted.

e Stochastic dynamic optimisation

* Challenges:
e Complex system
* high dimensional data
* real time computation
* uncertainty

Case and data from DNV-GL.



Sensor
based

monitoring



1. Condition monitoring: Fault and anomaly detection
and prediction

* Sensors on ships control operations

e Detect as fast as possible faults and anomalies

* Predict faults as early as possible

* Filter away effects of weather, sea conditions ... on the
Sensors

* Exploit knowledge about machines and sensor networks

e Quantification of uncertainty to control false warnings

* Challenges:
= approximating complexity
= high dimensional data
" real time computation
" uncertainty

Case and data from ABB and DNV-GL



2. Performance monitoring and optimisation

* Develop a multisensor multiscale approach to describe and
optimise performance of the ship operation under given
weather and ocean conditions and other operation
constrains.

* Challenges:
= approximating complexity
= high dimensional data
= real time computation
" uncertainty

Case and data from ABB and DNV-GL
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m Surprise and changepoint prediction allows control.

« Measures of surprise quantify the level of incompatibility of data with
a given model, without any reference to alternatives.

« Surprise plays an important role in dynamic situations, where the

reference Is the past trajectory.

« Change point prediction, rather than locating changepoints after
occurrence.



CHANGEpoint --- Abrupt discontinuity of a feature of a time series

ts

AT N U~ time

CHANGEregion --- slow change in some feature, from a status to an other one

ts
o “/\ﬂ‘ /\F/\’\,‘/\

A A A4 time

What is changing?
* Feature of ts: mean, st dev, spectrum, first derivative, second derivative, etc etc
(VERY many options!)



CHANGEpoint DETECTION

A feature of a ts

NOW
Looking back to the past, find as fast as possible:
* If there has been a CP o
e Whereitis?
* Whatis changing?
 How bigis the change? _

— with uncertainty

Univariate: one ts, one feature at the time

Multivariate: many ts’s or many features of one ts, as a time
Dependence between time series and CPs
Coherence of CPs
[There are methods, but much remains to be done]



CHANGEpoint PREDICTION

A feature of a ts

time

NOW

Looking forward, find as early as possible:
e If there will be a CP

 Where it will be?

* What will change changing?

* How big will the change be? _

— with uncertainty

Univariate
Multivariate

LAG

time

NOW



CHANGEpoint PREDICTION

time

NOW

To predict we must understand/learn the mechanism that generates the CPs
* Experimentsin the lab
* Statistics
= Aseries with a lot of CPs, to learn the process under which the occur
(we do not need to know why the happen, but can predict them)
= One ts causes a CP in another ts. TRIGGERING



MASTER TS1

AN~ ’\

TRIGGER TS2

TRANSFER
LAG

TN e~

Triggering
event

Assume: We know which ts is master and which ts is trigger
Maybe we know which two features are involved.

Maybe not: find which feature of TS2 triggers TS1

Estimate the lag and transfer function, with uncertainty



MASTER TS1

_ A

T N

\%

TRIGGER TS2
TRANSFER

Triggering
event

At the time point when the triggering event in TS2 is detected, predict the CP in TS1.



MASTER TS1

AN~ ’\

TRIGGER TS2 and TS3
LAG

TRANSFER

hJ\"—-\l,\W

Triggering
events

Assume: We know which ts is master and which TS2 and TS3 are triggers

The triggering events might be simultaneous or not, but co-ordinated in some way
The triggering events do not need to be CPs, but just events which co-occur rarely.
Estimate the lag and transfer function, with uncertainty



TS1

TS3 TS2 15100

Selection of triggers

* Many possible triggers: which ones are really triggering?
* Few — sparsity
* Can be many features, combinatorics.



TS1.1 || TS1.2| | TS13 | |TS1.4

TS3 TS2 15100

More than one master

* We know the masters (or features of the same master ts)
e Co-occurrence or coherence of the CP in the masters
e Also: a master can be a trigger of another master.



TS2 > [ 133 means triggering, or “effect”, with some delay

A known network of ts

TS1.3

751.1 | —>{ 151.2 < TS1.4
T51.1 | 3

15100

* no master
 multiple triggering paths



Network not known exactly

TS1.3
TS1.1 TS1.2 1S1.4

TS1.1 TS100

estimate the network

for the purpose of CP triggering, via transfer functions (not correlation of the signal)’
Learn the way CPs are produced in the network, in which order

After estimation of network, predict future CPs in some ts, given observed triggering
events.

More uncertain



Detecting Changes in Covariance

Jamie-Leigh Chapman?, Idris Eckley?, Arnoldo Frigessi?, Rebecca Killick? ~



X(t)

Wait-time (sec.)
200 400 600 800 1000
I

Y(t) = X(t-D)

Wait-time (sec.)
200 400 600 800 1000
I

|
L

cov ( X(t), Y(t) ) is small, while cov ( X(t-D), Y(t) ) =1

we can look to all cov (X(t-lag), Y(t) )




X(t)

Wait-time (sec.)
200 400 600 800 1000
|

400 600 800 1000
]

Wait-time (sec.)

200
1

Y(t) = X(t-3) for t<256
= X(t-5) for t>256

Day




X(t)

Y(t) = X(t-3) for t<256

= X(t-5) for t>256

Plot of cov (X(t-lag), Y(t) ) as a function of lag changes in t=256

00 04 0.8

0.4 0.8

0.0

Change in cross covariance




Rolling window estimate of the cross correlation function at lag
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Figure: Local cross covariance function between X and Y for lags zero to five.
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 Changein 256 forlag 3 and lag 5
* Also for other lags we see a change!
* Eckley has a method to correct for this bias, and catch just the right lags
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Some observations from recent literature:

Multi sensor, multi stream, high dimensional time series, ...
Both in statistics journals and IEEE journals

Either classical time series approaches, or taking time into
consideration in other ways, like sequential analysis, or ignoring it!

Motivated by signal processing problems, speech recognition,
nuclear power plants ++

Mainly (multiple) change point detection <<as soon as possible>>
after it has happened, Expected detection delay (EDD) and Average
run length (ARL), CUSUM




The Annals af Stotistics

2013, Vol. 41, No. 2, 670-692

DOI: 10,1214/ 13- A051054

( Institute of Mathematical Statistics, 2013

SEQUENTIAL MULTI-SENSOR CHANGE-POINT DETECTION!

By YAo XIE AND DAVID SIEGMUND

Duke University and Stanford University

We develop a mixture procedure to monitor parallel streams of data
for a change-point that affects only a subset of them, without assuming a
spatial structure relating the data streams to one another. Observations
are assumed initially to be independent standard normal random vari-
ables. After a change-point the observations in a subset of the streams of
data have nonzero mean values. The subset and the post-change means
are unknown. The procedure we study uses stream specific generalized
likelihood ratio statistics, which are combined to form an overall detec-
tion statistic in a mixture model that hypothesizes an assumed fraction
po of affected data streams. An analytic expression is obtained for the
average run length (ARL) when there is no change and is shown by simu-
lations to be very accurate. Similarly, an approximation for the expected
detection delay (EDD) after a change-point is also obtained. Numerical
examples are given to compare the suggested procedure to other proce-
dures for unstructured problems and in one case where the problem is
assumed to have a well-defined geometric structure. Finally we discuss
sensitivity of the procedure to the assumed value of po and suggest a
generalization.



SEQUENTIAL MULTI-SENSOR CHANGE-POINT DETECTION?
By YA0o XIE AND DAVID SIEGMUND

N sensors, each giving observations

Yt n=1,2,..., N
t=1,2,...

At certain time K, there are changes in the distributions of observations
from a subset M of the sensors. This changetime K, the subset M and
Its size #M are unknown.

Goal: to detect K as soon as possible after it occurs (minimizing EDD)

while keeping the frequency of false alarms as low as possible
(maximizing ARL) .

N is large, #M is relatively small



ML] 1 Sep 2015

Submitted to Ann Oper Res manuscript No.
(will be inserted by the editor)

Multi-Sensor Slope Change Detection

Yang Cao - Yao Xie - Nagi Gebraeel

Received: date / Accepted: date

Abstract We develop a mixture procedure for multi-sensor systems to mon-
itor parallel streams of data for a change-point that causes a gradual degra-
dation to a subset of data streams. Observations are assumed initially to be
normal random variables with known constant means and variances. After a
change-point the observations in a subset of the streams of data have increas-
ing or decreasing mean values. The subset and the slope changes are unknown.
Our procedure uses a mixture statistics which assumes that each sensor is af-
fected with probability pp. Analytic expressions are obtained for the average
run length (ARL) and the expected detection delay (EDD) of the mixture

procedure, which are demonstrated to be quite accurate mumerically. We es-
tahlich aevmmtatia antimnality oF tha mivtonea nroendiea Wirrnoarioal avarmlos
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m Sampling bias and missing values take new dimensions.

m There are new possibilities in using all data.

m High frequency time series data allow intervention in real time.

m Accounting for uncertainty of estimates is fundamental in decision making.

m Causal effects enable effective actions.

m Real time computations mean model approximation.

m Surprise and changepoint prediction allows control.

m Sparsity and knowledge integration allow dimension reduction and sharper
inference.

m Network based decision theory.

m Large Scale Optimisation.
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A seven-gene signature predicting benefit of
postmastectomy radiotherapy in high risk breast cancer

e Postmastectomy radiotherapy (PMRT) is
recommended to breast cancer patients estimated to
have high risk of loco-regional recurrence (LR)

e Lancet 2005: substantial survival benefit after PMRT
also in patients with low risk of LR

Aim
* To identify genes, whose transcription interacts with
PMRT to modify the hazard of LR



Material and Methods

DBCGS82bc

Danish Breast Cancer Cooperative Group

3083 high risk pts.

mastectomy

partial axillary lymph node dissection

1708 1375
Premen. Postmen.
(b) (c)
RT+CMF || CMF RT+TAM | TAM

7 genes identified
7-gene index based on
the combined expression levels

| 267
fresh frozen tumor samples

Whole genome arrays
(Applied Biosystem Human
Genome Survey Microarray v2.0)

195/267 samples
successful microarray

2-step
Cox Proportional Hazard
model with lasso penalty



 Cox proportional hazard

T, = 1 if patient did receive RT
= 0 if patient did NOT receive RT

Hazard of LR for personi at time t =
T 17910 17910
oV - exp(8Z+ o + Y B, X0+ Y vTiXe: )

g=1 g=1

baseline \
hazard

joint effect of the
overall benefit expression of the genes
of RT and the RT:

effect of other _ _
RT/gene interaction

clinical factors

(ER, menop.status,

tumor size, posNode) effect of the expression
of the genes



Pre-selection step

time RT
1 | @ 0
t o 1
E O
O )
= .
o O
O (@) 0
N RE! N
Penalized Cox Models , union
o 5 Gene selection rE—
event censored — 3 0000000
* - , eeoeoo
genes Lasso penalty >
weights
10 O O O O » @0
o .
5 . O O O 0O O — > union
€:00000 ) —
O O 0O 0 O
No oo oo (] Interaction gene
\ s J ) Main effect gene
. p
p>>N

Candidate genes

Set-l Set-\.]
Y

..

N

.

® o

® ®

°o! ©
e

44 178

* 44+178=206, as 16 genes were in both lists




Final selection

Input

Pre-selected genes

,
.
e o o0 00
.
.

H_/ —
Interaction genes —_

Main effect genes Ll'Pena“ZQG
Cox regression
Patients * RT +
|**********’< 5-fold CV
* No-RT

Clinical variables
; .
| 1 ieeeeieeenn | K|

[ Final set of interaction genes |*]

interaction genes: 7
main effect genes: 46
(3 genes in common)




AB-ID

Gene Symbol () RR=exp(¥) Description
oA HLA-DQA1 0.0699 1.0724 major histocompatibility complex,
hCG2042724 (0.0440) (0.0412) class 11, DQ alpha 1 chr. 6p21.3
o IGKC -0.0646 0.9375 immunoglobulin kappa constant
'(21980528. ) -
hCGLo80528.1 0.0426 0.0455 chr. arm 2p12
I
RGS1 0.2810 1.3244 regulator of G-protein
hCG39901.3
(0.1323) (0.1115) signalling 1 chr. 1g31
A1 A ADHI1B -0.0314 0.9691 alcohol dehydrogenase 1B (class I).
hCGAA84.2 (0.0305) (0.0325) beta polypeptide chr. 4q21-q23
LCG5678.3 DNALI 0.3763 1.4568 dynein, axonemal, light intermediate
eIV LE (0.1429) (0.1130) polypeptide 1 chr.arm 1p35.1
X OR8G2 -0.1266 0.8811 olfactory receptor, family 8, subfamily G
hCG2032658 ) ' :
! ’ (0.0636) (0.0699) member 2 chr. 11q24
IR 0.0452 1.0462 Unknown, chr 7,
hCG2023290 ( 0.0186) (0.0179)




* Is RT worth doing? Yes, all the time, because of large main effect of RT.
« But the relative advantage depends on our 7 genes.

SCORE of LR for personiattimet=

T

exp( + Z Yo Li Xy )

OdT?; -+
/ 7 genes

overall benefit RT/gene interaction

of RT
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