Petro-HRA

En ny metode for å analysere vurdere menneskelig pålitelighet i kvantitative risikoanalyser *Metodebeskrivelse og casestudie*

Claire Taylor, Sondre Øie, ESRA, 08 September 2016

TNU – Trondheim orwegian University of tience and Technology

Contents

General introduction

• Why does QRA need HRA?

The Petro-HRA method

The Research Council

- Background & overview
- The 7 steps in the Petro-HRA method

(Illustrative examples throughout the presentation)

Glossary of terms

- HRA Human Reliability Assessment
- QRA Quantitative Risk Assessment
- HFE Human Failure Event
- HEP Human Error Probability
- PSF Performance Shaping Factor
- DP Dynamic Positioning

The Research Council

Why does QRA need HRA? -1

- Risk informed decision-making
- Problem definition;
 - Drilling on shallow waters using Dynamic
 Positioning (DP)
 - Avoid costs associated with mooring assistance
 - How do we know this is safe (enough)?
 - Uncertainties associated with critical DP operator actions

Why does QRA need HRA? -2

- Quantitative Risk Assessment (QRA)
 - Typically uses event trees to model system failures that could lead to a Major Accident Scenario
 - Some differences in how human-initiated failures are represented in QRA
 - Human Failure Events (HFEs) may be explicitly represented at the top level of the even tree, or may be implicit in other top level failures

The Research Council

Why does QRA need HRA? -3

Figure from: Pedersen, R. N. (2015). QRA Techniques on Dynamic Positioning Systems During Drilling Operations in the Arctic: With Emphasis on the Dynamic Positioning Operator. University of Tromsø.

Statoil

The Research Council

of Norway

NTNU – Trondheim Norwegian University of Science and Technology

The Petro-HRA project

- Established in 2012 as a joint industry/research project, sponsored by Statoil and the Research Council of Norway (RCN), with contribution from DNV-GL
- The main goal was to evaluate and adapt an existing nuclear HRA method to a petroleum context
 - The Standardized Plant Analysis Risk-Human Reliability Analysis (SPAR-H) method was originally developed for analysis of human actions in a nuclear control room
 - The SPAR-H method has been used quite extensively in the US for human reliability analysis in the nuclear industry
 - The SPAR-H method was chosen for the Petro-HRA project based on a previous study which concluded that it was the most promising for evaluating petroleum events

NTNU – Trondheim Norwegian University of

• The Petro-HRA guideline will be completed by end of 2016.

The Research Council of Norway

Development of the Petro-HRA method

• Much of the focus was on:

The Research Council

- Evaluating and adapting SPAR-H nominal values and PSF descriptions
 & levels, to make them more suitable for petroleum activities & tasks
- Documenting the qualitative analysis process, including task and error analysis, to make Petro-HRA a "complete" method
- Many HRA methods do not describe how to do qualitative analysis
 - Causes uncertainty amongst less experienced analysts
 - Increases variability between analysts in their approach and results
- The Petro-HRA method includes guidance on qualitative analysis, therefore is considered a "complete" method

SPAR-H and Petro-HRA: key differences -1

Nominal HEP is set at 0.01
Nominal HEP is set at 0.01
No separation between diagnosis (cognition) and action tasks because there are no tasks in petroleum that are purely diagnosis or action
iptions)
Time Threat stress Task complexity Experience/Training Procedures Human-Machine Interface (HMI) Adequacy of Organization Teamwork
<i>ri</i> ,

PetroHRA

Statoil IF2 D NTNU - Trondheim Norwegian University of Science and Technology

Available	PSF Levels Inadequate time Barely adequate time (≈2/3 x nominal) Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	P(failure) = 1 10 0 1		Available time Extre Very Mode	emely high negative / high negative derate negative	HEP=1 50
Available Time	Inadequate time Barely adequate time (≈2/3 x nominal) Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	Diagnosis P(failure) = 1 10 1 0 1	s .0	Very Mode	/ high negative derate negative	50
Available Time	Inadequate time Barely adequate time (≈2/3 x nominal) Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	P(failure) = 1 10 1	.0	Mode	derate negative	10
Available Time	Inadequate time Barely adequate time (≈2/3 x nominal) Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	P(failure) = 1 10 1 0.1	.0	Nomi		10
Time	Barely adequate time Barely adequate time ($\approx 2/3 \text{ x nominal}$) Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	P(failure) = 1 10 1 0.1			ninal	1
	Barely adequate time ($\approx 2/3 \times \text{nominal}$) Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	10		Mode	lerate positive	0.1
-	Nominal time Extra time (between 1 and 2 x nominal and > than 30 min)	1		Not a	applicable	1
-	Extra time (between 1 and 2 x nominal and > than 30 min)	0.1		Threat stress High	negative	25
-	than 30 min)			Low	negative	5
				Very	low negative	2
	Expansive time (> 2 x nominal and > 30 min)	0.01		Nom	ninal	1
——	Insufficient information	1		Task complexity Very	applicable	1
Steasol	Extreme	5		Task complexity Very	/ nign negative	10
Stressore	Extreme Triat	5	-H-	Very	low pegative	2
Suressors	High	2	_ <u>H</u> _	Nomi	ninal	1
_	Nominal	1	_ <u>L</u> _	Mode	lerate positive	0.1
	Insufficient Information	1	\Box	Not a	applicable	1
Complexity	Highly complex	5		Experience/training Extre	emely high negative	HEP=1
	Moderately complex	2		Verv	high negative	50
-	Nominal	1	Π	Mod	derate negative	15
	Obvious diagnosis	0.1	H	Low	negative	5
-	Insufficient Information	1	-H-	Nom	ninal	1
	Insufficient Information	1	<u> </u>	Mode	lerate positive	0.1
Experience/	Low	10	_ <u> </u>	Not a	applicable	1
Fraining	Nominal	1		Procedures Very	/ high negative	50
_	High	0.5		High	negative	20
	Insufficient Information	1		Low	negative	5
Procedures	Not available	50		Nom	ninal	1
	Incomplete	20	H	Low	positive	0.5
-	Available but noor	5	-H-	Not a	applicable	1
-	Available, but poor			Human-machine interface Extre	emely high negative	HEP=1
_	Nominal	1	_ <u>H</u> _	Very	Inign negative	10
_	Diagnostic/symptom oriented	0.5	_ <u> </u>	Nom	vinal	10
	Insufficient Information	1		low	nositive	0.5
Ergonomics/	Missing/Misleading	50		Nota	applicable	1
HMI	Poor	10		Adequacy of organization Verv	high negative	50
-	Nominal	1		Mode	derate negative	10
-	Good	0.5		Nom	ninal	1
-	Insufficient Information	1	H	Low	positive	0.5
Eltran for	Lisét	1 D(feiling) = 1		Not a	applicable	1
runess for	Unit	P(failure) = 1	<u></u>	Teamwork Very	/ high negative	50
Duty	Degraded Fitness	5		Mode	lerate negative	10
	Nominal	1		Very	low negative	2
	Insufficient Information	1		Nom	ninal	1
Work	Poor	2		Low	positive	0.5
Processes	Nominal	1	<u> </u>	Nota	applicable	1
	Good	0.8	H	Physical working Extre	emely high negative	HEP=1
-	La sufficient la formation	1	-H-	environment Mode	lerate negative	10
	Insumment Information	1		Nom	ninai	1

PetroHRA

The Research Council Statoil IFE D NTNU - Trondheim of Norway Statoil IFE D Science and Technology

The Petro-HRA method

The Research Council

Statoil

- 7 steps in the method
- Non-linear iteration between & within steps
- May include inputs from the QRA in the form of a HFE, HEP and/or scenario information
- Outputs an updated HEP to the QRA
- Outputs recommendations for improvement measures to the installation itself

DNV-GI

SINT

NTNU – Trondheim

Science and Technology

Norwegian University

PetroHRA

Step 1 - Define the scenario

The Research Council 🦂

Scenario definition

Statoil

NTNU - Trondheim

Norwegian University of

Science and Technology

SINTE

12

DNV-GI

Example: loss of position of a drill rig

The Research Council

Statoil

- Position of the rig above the wellhead is maintained autonomously by Dynamic Positioning (DP) through the action of a set of thrusters
- A Dynamic Positioning Operator (DPO) located in the Marine Control Room (MCR) is responsible for constant monitoring of DP panels and screens and carrying out emergency procedures if needed
- In a drive-off scenario, the DPO must stop the thrusters and initiate emergency disconnection of the rig from the wellhead

DNV-GI

SINT

13

NTNU – Trondheim

Norwegian University of

Science and Technology

Input to scenario definition from QRA

Figure from: Pedersen, R. N. (2015). QRA Techniques on Dynamic Positioning Systems During Drilling Operations in the Arctic: With Emphasis on the Dynamic Positioning Operator. University of Tromsø.

Statoil

The Research Council

of Norway

NTNU – Trondheim Norwegian University of Science and Technology

The Petro-HRA scenario description template

Торіс	Description	Comments
Initiating event	An undefined DP failure initiates the drive-off. All thrusters pointing aft – giving forward thrust. Thrusters are at zero revolution giving zero forward thrust at the starting point. Error in the DP control initiates the thrusters to accelerate up to full forward thrust: 6 thrusters running in calm water.	It is not important to define the actual cause (i.e. failure mode) of the drive-off. This is because the response pattern and required actions will more or less be the same. For more than 6 thrusters, calculations show that the scenario duration reported below is too long and the automatic EDS will activate before the DPO activates the manual EDS.
Intermediate events	Operator: Detect drive-off Diagnose the situation Decide the next steps Activate emergency thruster stop (bringing the rig into a drift-off) Activate the Red Alert and EDS	It is assumed that DPO activates the emergency stop of the thrusters. This is done to save time and reduce possible damages to the well-head. The rig will still be drifting off position, but at a lower speed. From the DP manual "In a Drive-Off event, stop thrusters, Initiate Red Alert and enable EDS immediately." DPO2 may notify the driller.
End of event sequence (successful)	Successful manual shutdown of the thrusters followed by manual activation of the EDS results in a timely and safe disconnection of the LMRP from the BOP.	There is no direct feedback in the system for successful disconnection. However CCTV images from the ROV and Moon Pool camera may show if the LMRP is disconnected and whether there is tension on the riser (i.e. slip joint is moving).
End of event sequence	For this scenario the Automatic EDS is enabled with a safety margin to prevent damage to the well and rig. As	

Statoil IFE D NTNU - Trondheim Norwegian University of Science and Technology

Step 2 - Collect qualitative data

Collecting qualitative data

Scenario talk-through / walk-through

- This should be one of the first activities in the data collection
- Gain a detailed understanding of how the operator would respond in the scenario
- Understand local contexts and constraints that could affect operator response

PetroHRA

Observations of Task Performance / Training

- Understand how the operators work and interact with each other and the I&C systems around them
- Observe normal working conditions to collect general qualitative data
- Observe training exercise to collect scenario-specific qualitative data

Interviews / Discussions with Operators

- Most commonly used data collection technique
- Should always interview more than one operators to ensure a more balanced view
- Also consider interviewing shift managers, trainers, site QRA analyst/end user, HSE advisor, etc.

The Research Council >

NTNU – Trondheim Norwegian University of Science and Technology

Identify deviation scenarios

- Deviations to the main scenario might also exist, and should be considered for analysis
 - [A deviation is] a scenario that deviates from the nominal conditions normally assumed for the QRA sequence of interest, which might cause problems or lead to misunderstandings for the operating crews (adapted from Forester et al., 2007)
 - Deviations from what is generally expected, if sufficiently different, can cause serious mismatches between the actual situation and the operators expectations, their performance aids, their usual approach to implementing procedures, and so forth (from Forester et al., 2007)

The Research Council

Step 3 - Develop the task analysis

Hierarchical Task Analysis (HTA) example

Tabular Task Analysis (TTA) example

Step No	Task	Cue	Feedback	нмі	Responsible	Assumptions	Notes		
2	DIAGNOSE DRIVE-OFF EVENT								
PLAN 2	DO 2.1 to 2.3 in any order, then DO 2.4								
2.1	Check riser angle	One or several loss of position indicators detected as part of task step 1.0 – most likely increase in thruster sound. In addition, previous task steps in 2.0 will be cues for subsequent diagnosis steps.	Noticeable increase in riser angle displayed in degrees.	DPOS	DPO 1	The DPO on duty monitors parameters continuously through the watch and will quickly notice deviation in trends and values.	Automatic EDS initiates when the riser angle exceeds 2°. To be successful (safe) the disconnection must occur before the riser angle exceeds 8°.		
2.2	Check rig speed	Same as for task step 2.1.	Noticeable increase in speed on HMI displayed in knots.	K- Pos – DPOS.	DPO 1	Same as for task step 2.1.			
2.3	Check position offset	Same as for task step 2.1.	Noticeable position offset on HMI displayed in meters and with a rig position diagram.	K- Pos – DPOS.	DPO 1	Same as for task step 2.1.	It could take up to 5 seconds from the thrusters starting up before he will see any change in rig position on the HMI. The DPO would therefore have to check the position offset a few times to be sure that a drive-off is occurring.		

Table 10.1 TTA for the task "Diagnose drive-off event"

Conducting a timeline analysis

- Time is often a critical factor in petroleum events; operators often have only minutes, or even seconds, to respond and intervene to control and mitigate the consequences of an event.
- Operators and other SMEs can give good insights into the time required to complete tasks, which tasks can be performed in parallel, where time pressure might exist, etc.

The Research Council

NTNU – Trondheim Norwegian University of Science and Technology

Step 4 - Identify and describe errors

Human Error Identification example

Table 10.3 Human error identification for the task "Diagnose drive-off event"

Step No	Description	Potential error	Likely consequences	Recovery opportunity	Further analysis	PSFs
2	DIAGNOSE DRIVE-OFF EVENT				Y	
PLAN 2	DO 2.1 to 2.3 in any order, then DO 2.4					
2.1		DPO omits to check riser angle	DPO has an incomplete awareness of drive-off situation and must rely only on information about rig speed and position offset. This may cause delay or omission of thruster stop and EDS activation.	Additional checks in Steps 2.2 and 2.3	N	
	Check riser angle	DPO misreads / misdiagnoses riser angle degrees (being less than actual)	DPO may experience less urgency something which in turn may delay subsequent required actions, i.e. thruster stop and EDS activation.	Additional checks in Steps 2.2 and 2.3	Y	
		DPO checks riser angle too late/ or spends too much time checking	DPO has less time available to check other loss of position indicators. DPO has an incomplete awareness of drive-off situation and must rely on checking rig speed and position offset alone. This may cause delay or omission of thruster stop and EDS activation.	No recovery	Y	

The Research Council

Statoil IFE D NTNU - Trondheim Norwegian University of Science and Technology

Identify Performance Shaping Factors (PSFs)

- The Petro-HRA method quantifies errors by considering the effects of PSFs
- Therefore the analyst must also consider what PSFs exist that may contribute to the identified errors by considering "what if...?", e.g.
 - Is time a factor for the error potential in this task?
 - Could the quality of procedures affect the potential errors in this task?

- The Petro-HRA method includes nine PSFs:
 - 1. Time
 - 2. Threat Stress
 - 3. Task Complexity
 - 4. Experience / Training
 - 5. Procedures
 - 6. Human-Machine Interface
 - 7. Adequacy of Organization
 - 8. Teamwork
 - 9. Physical Working Environment

NTNU – Trondheim Norwegian University of Science and Technology

Step 5 – Human error modelling

NTNU - Trondheim

Science and Technology

Statoil IFE D NTNU - Trondheim Norwegian University of Science and Technology

The Research Council

Human Error Modeling for Petro-HRA

- Event trees most commonly used in QRA, and therefore it is the recommended approach for Petro-HRA
 - Event trees provide a good high-level description of the post-initiating event scenario
 - It may be easier to integrate the results into the QRA event tree if a similar format is used

The Research Council

Event Tree model example

Event Tree table example

Table 10.5 C	Operator action	event tree table	for a drive-off scenario
--------------	-----------------	------------------	--------------------------

ID	Event	Failure Event	Potential errors (from HEI)	HEP	Final outcome/End state
0	Drive-off occurs.	Initiating event: A drive-off occurs due to DP failure.	N/A	N/A	N/A
1	DPO detects DP abnormalities. Ref. Task 1.0	Failure to detect DP abnormalities. The drive-off is not detected or detected too late by the DPO, making him or her unaware of the drive-off being initiated.	DPO does not hear sound of thrusters increasing (or too late). DPO does not detect increase in thruster force on HMI. DPO does not hear sound of thrusters increasing. DPO does not detect increase in thrusters force on HMI.	0.x	The Automatic EDS is activated according to the offset position limit defined in the WSOC. Due to the speed of the rig the riser angle may be too steep for the disconnection to be successful. Damage or breakage of equipment, with potential environmental impact (e.g. spill of mud).
2	DPO diagnose situation as drive-off. Ref. Task 2.0	Failure to diagnose drive-off. The DPO does not realize that the abnormalities indicate a drive- off (as described in the scenario description). For example, he or she fails to recognize the type of event or its severity.	DPO does not diagnose that this is a drive-off event. See additional associated human errors marked (Y) in the HEI, Table 11.3.	0.x	See ID 1 (above).
3	DPO decides to disconnect rig from well.	Failure to decide on correct mitigating actions.	DPO does not realise that thrusters should be stopped first before initiating EDS.	0.x	See ID 1 (above).

Step 6 – Human error quantification

Statoil IFE D NTNU - Trondheim Norwegian University of Science and Technology

Petro-HRA PSF sheet

- One for each event
- Select multipliers
- Document justification
- Identify 'performance drivers'
- Avoid 'double counting'
- Calculate HEP for event (see next slide)
- The example is fictional and only for illustration purposes

The Research Council

Plant/installation	Mobile Offshore Dril	lingUnit	Date 17 03 16		
HFE ID/code	2.0				
HFE scenario	Fastdrive-off				
HFE description	Failure to prevent we	ellhead dama	ge by disconnecting from well		
HFE sub-event	Failure to diagnose	situation as di	ive-off		
Analysts	Sondre Øie, Claire T	aylor			
HEP	HEP = 0.01 x 5 x 5 x	0.5=0.125			
Deca	PSF levels	Multipline	Substantiation. Specific reasons for selection of		
PSFs		Multiplier	P SF level		
Available time	Extremely high	HEP=1	While time is a critical factor throughout the scenario, t		
	negative		effect will not be significant until the final stopping of th		
	Very high negative	50	thrusters and activation of the EQD.		
	Moderatenegative	10			
	Nominal	1			
	Moderate positive	0.1			
	Notapplicable	1			
Threat stress	High negative	25	At this stage, when starting to realize that the event is		
	Low negative	5	fact a drive-off, the DPO is beginning to experience so		
	Verylownegative	2	bave a significant effect on the performance of this ave		
	Nominal	1	task sten		
	Notapplicable	1	The test is relatively simple and achievely accord		
l ask complexity	Very nigh negative	50	to retain a head of a small pumber of a promotors		
	Voorlowpogative	10	iterative checks of a small number of parameters.		
	Nominal	1			
	Mederate positivo	0.1			
	Not applicable	1			
Evneriencetreining	Extremely high	HEP=1	The DPOs have a lot of general training in DP system		
copenenceraning	negative	1121 - 1	and navigation, as well as some desktop discussions		
	Very high negative	50	draw on experiences from previous events. But they d		
	Moderate negative	15	not train specifically on drive-off scenarios and how to		
	Low negative	5	correctly diagnose whether or not it is necessary to		
	Nominal	1	disconnect.		
	Moderate positive	0.1	-		
	Not applicable	1			
Procedures	Very high negative	50	The operating manuals contain some information about		
	High negative	20	which parameters define a drive-gff, however, this		
	Low negative	5	information is not always clear and scattered across		
	Nominal	1	several documents.		
	Low positive	0.5			
	Not applicable	1	1		
Human-machine	Extremely high	HEP=1	The HMI for diagnosing the drive-off parameters (riser		
interface	negative		angle, position offset, rig, speed) is easy-to-understand		
	Very high negative	50	and readily available in front of the DPO.		
	Moderate negative	10			
	Nominal	1			
	Low positive	0.5			
	Not applicable	1			
Adequacy of	Very high negative	50	Adequacy of organization is not considered a		
organization	Moderatenegative	10	performance driver for this event/ task step.		
	rvominal	1			
	Low positive	0.5	4		
-	ivot applicable	1	The event it as is as here the time to be the second sector in the SCO as		
reamwork	very nign negative	50	watch It is standard procedure that parts the		
	Wooderate negative	10	disconnection is the on-duty DPOs responsibility		
	Very low negative	4	disconnections the oneduty prostesponsibility.		
	ivominai	105	4		
	Not opplicable	0.0			
	ivot applicable	UED-1	The shuring lunghing any instant of the Delay in		
rnysical working	vicenment extremely high HEP=1 The physical		according to her stand according to NORSOK standards		
environment	Moderate negative	10	acceptable and according to NORSOR Standards.		
	Nominal	1			
	(NOTIONAL)				
	Not enplicable	1	1		

PetroHRA

How to calculate Human Error Probabilities (HEPs)

Nominal HEP **PSF** Levels PSFs HEP Х with **Extremely High Negative** Time 0.01 Threat Stress Very High Negative **High Negative** Task Complexity Moderate Negative Experience/Training Low Negative Procedures No Effect HMI Low Positive Adequacy of Organization Moderate Postive Teamwork Physical Working Environment

NTNU – Trondheim Norwegian University of Science and Technology

Quantify HEP for overall HFE

Petro-HRA PSF summary worksheet								
Plant/installation	Mobile Offshore Drill	ingUnit		Date	17.03.16			
HFE ID/code	2.0							
HFE scenario	Fast drive-off							
HFE description	Failure to prevent we	Failure to prevent wellhead damage by disconnecting from well						
HFE sub-event	Failure to diagnose s	ituation as d	rive-off					
Analysts	Sondre Øie Claire T:	avlor						
HEP	HEP = 0.01 x 5 x 5 x 0	0.5=0.125						
	POPIEVEIS		Substantiation, Specific r	easonsf	for selection of			
PSFs		Multiplier	TPSF level					
Available time	Extremely high	HEP=1	While time is a critical factor t	hroughou	ut the scenario, the			
	negative		effect will not be significant u	ntil the fin	al stopping of the			
	Very high negative	50	thrusters and activation of the	a EQD.				
	Moderate negative	10	1					
	Nominal	1						
	Moderate positive	0.1						
	Not applicable	1	1					
Threat stress	High negative	25	At this stage when starting to	orealizet	hat the event is in			
	Low negative	5	fact a drive-off the DPO is be	eainninat	o experience some			
	Very low negative	2	degree of threat stress. How	ever it is n	ot considered to			
	Nominal	1	have a significant effect on th	eperform	nance of this event/			
	Not applicable	1	task step.	1				
Task complexity	Very high negative	50	The task is relatively simple a	and only i	ndudessome			
rusk complexity	Moderate negative	10	iterative checks of a small nu	mberofr	aremeters			
	Very low negative	2		moer or p	Charles and the construction of the			
	Nominal	1						
	Moderate positive	0.1		N				
	Not applicable	1	-	\mathbf{N}				
Evention entroining	Extremely high	UED-1	The DBOs have a lot of some		a in DB systems			
Experienceutaining	Extremely right	HEF-1	and pavication as well as so	me desit	on discussions and			
	Vegebish seatting	50	draw on experiences from pr	me depri	op discussions and			
	Verynignnegauve	30	not train specifically on drive	offecers	ios and haw to			
	Moderate negative	15	correctly diagnose whether o	r notitis i	nanessen/to			
	Nominal	0	disconnect					
	Nominal	-	- Classon neor.					
	Moderate positive	0.1	4					
	Not applicable	50	The end of the second second		demost in the d			
Flocedules	verynignnegauve	50	The operating manuals conta	insomer	mormationabout			
	High negative	20	information is not always alor	ive-gu, n	owever, this			
	Lownegative	0	soveral documents	ar anu sua				
	Nominal	1.	- Several documents.					
	Low positive	0.5	_		\			
	Not applicable	1						
Human-machine	Extremely high	HEP=1	ine HMI for diagnosing the d	rive-off p	arameters (riser			
interface	negative		angle, position offset, ng spe	ed) is eas	sy-to-understand			
	very high negative	50	and readily available in front	of the DP	0.			
	Moderatenegative	10	4					
	Nominal	1	1					
	Low positive	0.5						
	Not applicable	1						
Adequacy of	Very high negative	50	Adequacy of organization is r	otconsid	tered a			
organization	Moderatenegative	10	performance driver for this ev	/ent/task	step.			
	Nominal	1						
	Low positive	0.5]					
	Not applicable	1]					
Teamwork	Very high negative	50	The event/taskstep is only o	arried ou	t by the DPO on			
	Moderate negative	10	watch. It is standard procedu	re that pe	enforming the			
	Very low negative	2	disconnection is the on-duty	DPOs res	sponsibility.			
	Nominal	1	1					
	Low positive	0.5	1					
	Not applicable	1						
Physical working	Extremely high	HEP=1	The physical working environ	ment on (the Bridge is			
environment	negative	1	acceptable and according to	NORSON	(standards.			
	Moderate negative	10	1					
	Nominal	1						
	Not applicable	1	1					
			1					

The Research Council

of Norway

Statoil

Nominal HEP x PSF Level = HEP $0.01 \times 5 \times 5 \times 0.5 = 0.125$ Experience / training Human-machine (low negative) interface (low positive) Procedures (low negative)

Update the PSF sheet with the calculation and HEP

Update the human error event tree

Calculate the HEP for each PSF sheet and update the event tree Do this for each event in the event tree model

The example is fictional and only for illustration purposes

SINTE

Idaho National Laborator 34

DNV.GL

The Research Council

Statoil

NTNU – Trondheim Norwegian University of Science and Technology

Deciding the level of quantification

- Similar issues to task analysis decomposition
 - If at a too high level, then the quantification may be overly simplistic, not capturing important nuances or the influence and impact of particular task steps on human performance
 - If at too low a level, then the quantification may become too detailed, resulting in an overly conservative HEP
- There is no "rule of thumb" for the level at which to quantify; there are pros and cons with each

The Research Council

Step 7 – Human error reduction

Impact assessment

- Integration of HEP into overall risk model
- Consideration of impact assessment criteria
 - Risk acceptance criteria
 - Size of HEP value(s), >0.1
 - Degree of HEP uncertainty
 - Severe QRA end states

The Research Council

• Assessment of HEP contribution

Integrate results into QRA

Statoil

The Research Council

of Norway

Error reduction analysis

- Select events for risk reduction
- Re-visit performance shaping factors
- Develop ERMs targeting specific human errors
- Develop ERSs targeting overall task performance

The Research Council

Recalculate HEPs based on updated PSF justifications

Select events for risk reduction

Figure 7.2 Event tree with example quantifications

For event trees, events are selected based on three combined considerations:

- the HEP for each single event
- the HEP for end states associated with each event sequence pathway
- the severity of end states for each event sequence pathway the events are part of

Re-visit performance shaping factors

- Purpose is to demonstrate risk reduction
 - Establish traceability between the PSF evaluations, calculated HEPs and suggested ERMs and/or ERSs
- Re-check which PSFs are performance drivers
- Error Reduction Measures (ERM) and Error Reduction Strategies (ERS) can target (reinforcing) positive PSFs as well as targeting (improving) the negative PSFs

The Research Council

Develop ERM & ERS

- Error mechanism prevention
- Error pathway blocking
- Error recovery enhancement
- Error consequence reduction

ERM

ERS

Overall task re-design

The Research Council 🦂

Overall PSF improvement

Developing ERM & ERS - example

Loss of position (drive off) scenario – main performance drivers

Time

Problem: The whole scenario takes place in under 2 minutes but cannot "create" more time without redesigning the entire rig. Long-term ERS: Provide feedback to engineers & designers for future installation builds.

HMI

Problem: Non-optimal design & layout of the workstation – esp. thruster shutdown. Intermediate ERM: Add a single emergency stop button to shutdown all thrusters at the same time.

Long-term ERS: Provide feedback to engineers & designers for future installation builds.

Training

Problem: DPOs receive no continuous training on hos to respond to a drive off event. Intermediate ERM: DPOs should receive simulator training at least X times per year . Short-term ERM: DPOs should receive onsite training (desktop exercises) at least X/year

Procedures

Problem: No procedure detailing the appropriate order of response actions in a drive off scenario.

Short-term ERM: Develop an appropriate operating procedure to clarify the required response actions (reinforced by training).

Update HRA/QRA model

HRA

- Document justifications (Petro-HRA sheet)
- Re-calculate HEPs for each event and model

QRA

• Integrate HFE HEP in QRA model

The Research Council 🦂

Re-calculate QRA to check for effects

Document the HRA

- All analysis outputs; ensure traceability
 - Scenario description
 - PSF assessment

The Research Council

- Task and timeline analysis
- Human error identification
- Human error model, incl. summary table
- Human error quantification, incl Petro-HRA sheets
- Impact assessment and error reduction analysis

Thank you!

Sondre Øie (Sondre.Oie@dnvgl.com) Claire Taylor (Claire.Taylor@ife.no)

