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Me and the Halden HTO Project

• Andreas Bye, Chief Scientist, IFE

• Programme Manager OECD Nuclear Energy Agency Halden Human-Technology-
Organisation (HTO) Project, from 1/1 2021
• 12 member countries, 20 organisations

• OECD NEA Halden HTO Project is a direct continuation of the Halden Reactor 
Project
• Formed in 1958
• Fuels and Materials research in the Halden Reactor
• Late 1960s first process control work
• 1972 Computerized process control for surveillance of nuclear power, OPCOM and DEMP
• First in the world

• Separate research line in the Halden Project: Process control -> Man-Machine research -> 
Man-technology-organization, now HTO

• The Halden Reactor closed in 2018
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Why nuclear?

• Carbon free
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Outline

• What is an SMR, Small Modular Reactor

• A brief history of nuclear power

• Examples of some SMR technologies, Gen IV

• Safety challenges
• The main nuclear accidents: Can they happen in an SMR?
• New safety challenges?  

• IFE HTO applied research on the topic
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What is an SMR?

• OECD Nuclear Energy Agency*: 
• “Small modular reactors (SMRs) are nuclear reactors with power outputs between 10 MWe 

and 300 MWe.

* https://www.oecd-nea.org/jcms/pl_26297/small-modular-reactors
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Why SMR?

From the U.S. Department of Energy*: 

• Modularity

• Lower capital investment

• Siting flexibility

• Enhanced safety and security

• Greater efficiency
• And other industrial applications such as hydrogen production, desalination plants, district 

heating

• Safeguards & security / nonproliferation

* https://www.energy.gov/ne/benefits-small-modular-reactors-smrs
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Nuclear history at a glance (U.S. DoE)
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Gen IV reactors

• In September 2002, the Generation IV International Forum* selected six system 
concepts for further development: 
• Very High Temperature Reactor
• Supercritical Water Cooled Reactor
• Gas Cooled Fast Reactor
• Lead Cooled Fast Reactor
• Sodium Cooled Fast Reactor
• Molten Salt ReactorGen IV 

• Thorium can be used as  fuel in fast breeder reactors, a number of solutions for 
thorium based reactors have been proposed and some are in operation. 

* https://www.gen-4.org/gif/jcms/c_59461/generation-iv-systems
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Gen IV

• Advantages (different advantages for different types)
• Much better exploitation of the fuel, waste problem reduced (not so long-lived)
• Fast breeders can burn their own and other plants’ waste
• High temperature facilitates hydrogen production
• Can be used for water desalination
• Some operated on low pressures (atmospheric), better safety
• Good safeguardability (non-proliferation)

• Some, e.g., gas-cooled reactors, have been in operation for years

• Some drawbacks
• Uncertainty about safety, especially related to the materials
• Economy of other normal reactors
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Nonproliferation

• Establishment of FFI (1946) and IFA (1948)  
• (Olav Njølstad: “Strålende forskning, Institutt for energiteknikk 1948-98”)

• History of civilian and military nuclear power split from the 50s and 60s 
• in Norway already in 1947 when they decided to establish Institutt for Atomenergi (IFA) to run 

the nuclear projects
• An industry (enrichment plants, etc) is required to make atomic bombs, however nuclear 

material may still be used for “dirty bombs” 

• Nonproliferation are these days supervised by international organizations and 
treaties
• Safeguards

• Possibilities are reduced by inherent design in many new reactors and SMRs
• Thorium (linked to enrichment degree)
• Molten salt (fuel embedded in the salt)
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SMRs soon to be in operation

• Based on proven technology, typically light water
• NuScale, many other developers
• Small PWRs (pressurized water reactor)
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Brief history of accidents in the nuclear industry

• Chernobyl

• Three Mile Island, Fukushima

• Can these accidents happen in SMRs or in modern reactors?
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Chernobyl 1986

Core meltdown and explosion
during a safety test

(Picture: Wikipedia)
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Causes of the Chernobyl accident

Many causes: Politics, safety culture 

Underlying design:

• Positive void coefficient of reactivity
• Moderator: graphite
• Coolant: water
• If cooling is lost by water heating up and evaporating, neutrons will still be moderated, and the 

chain reaction continues
• This is improved in operating RBMKs after the Chernobyl accident

• A standard western plant has negative void coefficient
• Uses water (liquid) both as coolant and moderator
• If water evaporates, neutrons will not be moderated, and the chain reaction slows down

14



Three Mile Island 1979

Partial meltdown and release of 
radioactivity

(Picture: Wikipedia)
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Causes of the TMI-2 (Harrisburg) accident

• Mechanical failures in the secondary system and a stuck relief valve

• Poorly designed Human-System-Interface, training, and procedures
• “Human error”, thought the situation was different from the actual situation
• Teamwork: New eyes from a new crew found the cause and solution
• Starting point for increased efforts in Human-Technology-Organisation research

• Underlying design:
• Decay heat removal in big nuclear power plants (the reactor automatically tripped, stopping 

the nuclear chain reaction as supposed, but the accident developed in the hours afterwards)
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Fukushima Daiichi 2011

• Earthquake -> shutdown ok

• Tsunami -> cut the external power 
and flooded the emergency diesel 
generators

• No power to circulation pumps for 
cooling

• 3 nuclear meltdowns, 3 hydrogen 
explosions and release of 
radioactivity

(Picture: Wikipedia)
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Causes of the Fukushima Daiichi NPP accident

• Many causes: lack of risk assessment for flooding, etc. Safety culture? 

• Some of the on-line accident handling was good, under extreme conditions

• Underlying design:
• Decay heat removal in big nuclear power plants
• Old design of core cooling after shutdown: active pumps, amounts of water etc
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Decay heat

• The core needs cooling for a long 
time after shutdown

• Old plants: Active water pumps, 
need power
• From the external electricity net
• Emergency diesel generators

• Defense-in-depth (several layers of 
barriers)

• Beyond design basis (BDB)
• Fukushima: 15 meter high tsunami was 

defined as BDB
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From Wikipedia:
“Decay heat as fraction of full power for a 
reactor SCRAMed from full power at time 0, using 
two different correlations” 

https://en.wikipedia.org/wiki/SCRAM


Decay heat removal, new solutions? 

• Natural circulation 

• Other passive systems, including large amounts of water available (sink core into 
water basins, etc)
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SMRs: remove the decay heat problem by design 

• Some of the new designs: 
• The shape and size of the reactor designed by worst case calculations of needed water and air 

for cooling all decay heat, without any power available
• -> 50-70 MW per unit
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Advanced reactors, safety considerations 

• U.S. NRC: “Risk-Informed and Performance-Based Human-System 
Considerations for Advanced Reactors” (March 2021):
• Advanced reactors: including all non light water reactors (LWRs), SMRs, microreactors, fusion 

reactors
• Safety attributes: 
• Inherent safety characteristics
• Passive safety features
• Automated safety systems
• Manual operator actions
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Challenges in the future

• More automation
• Marketed as a safety feature
• Is it really? How is the human-automation collaboration? 

• Multi-unit

• Remote operation

• Unforeseen stuff, the black swan
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SMR research questions   (courtesy IFE team: Rob McDonald, Claire 

Blackett, Maren Eitrheim, Stine Strand)

Multi-user/multi-unit issues
• Unit confusion 

• Variability and differences between units 
(similar or different)

• “Carry over” effects between units

• Multi unit disturbances  (Situation Awareness 
and workload issues) 

• Staffing 
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Remote operation issues
• Aspects of Latency

• Degrees of automated operation

• HMI presentation “local vs. remote”

• Psychological detachment, local vs remote

• Operators' familiarization and competence 
with differences between units



The Halden HTO Project and safety in SMRs

• Human Performance
• Crew roles, teamwork, decision making under uncertainty

• Digital I&C - Safety Assurance
• How to license digital systems

• Control Room Design & Evaluation
• CR validation and Human-system interfaces

• Human-Automation Collaboration
• Higher degree of automation on SMRs, basic multi-unit questions

• Digital Systems for Maintenance and Operations
• Condition monitoring and outage

• Digital Transformation of Decommissioning
• Plans for decommissioning must be made at time of design

• Cyber Security for Main Control Rooms
• Threats, detection and response, human behaviour during incident response
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The Halden HTO Project and safety in SMRs

• Supported by experimental labs, HAMMLAB, VR-lab, robot lab, cyber lab

• SMR simulator
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Halden Man-Machine Laboratory

PWR & BWR simulation capabilities



Conclusions

• SMRs have inherent safety characteristics and passive safety features that makes 
them safer by design than traditional nuclear power plants

• There are still challenges to safety and operations

• IFE and the Halden HTO Project work on many of these challenges.
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Thanks!
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