IFE

OECD NEA Halden HTO Project ESRA 1 February 2022

Andreas.Bye@ife.no

Small Modular Reactors, SMRs – Energy source for the future?

Andreas Bye

ESRA seminar Fremtidens energikilder -Sikkerhetsutfordringer med fornybar energi

Me and the Halden HTO Project

- Andreas Bye, Chief Scientist, IFE
- Programme Manager OECD Nuclear Energy Agency Halden Human-Technology-Organisation (HTO) Project, from 1/1 2021
 - 12 member countries, 20 organisations
- OECD NEA Halden HTO Project is a direct continuation of the Halden Reactor Project
 - Formed in 1958
 - Fuels and Materials research in the Halden Reactor
 - Late 1960s first process control work
 - 1972 Computerized process control for surveillance of nuclear power, OPCOM and DEMP
 - First in the world
 - Separate research line in the Halden Project: Process control -> Man-Machine research -> Man-technology-organization, now HTO
 - The Halden Reactor closed in 2018

Why nuclear?

• Carbon free

Outline

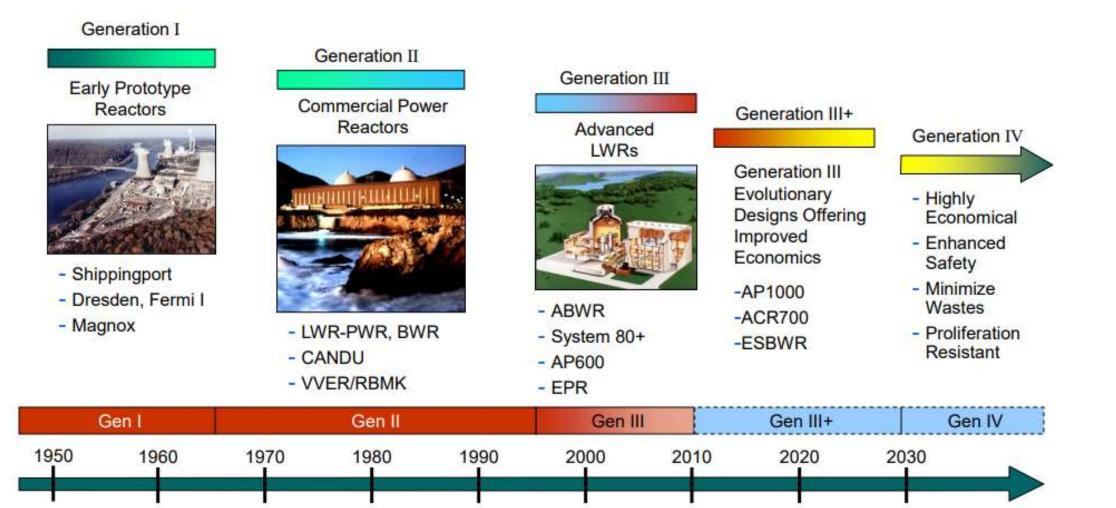
- What is an SMR, Small Modular Reactor
- A brief history of nuclear power
- Examples of some SMR technologies, Gen IV
- Safety challenges
 - The main nuclear accidents: Can they happen in an SMR?
 - New safety challenges?
- IFE HTO applied research on the topic

What is an SMR?

- OECD Nuclear Energy Agency*:
 - "Small modular reactors (SMRs) are nuclear reactors with power outputs between 10 MWe and 300 MWe.

* https://www.oecd-nea.org/jcms/pl_26297/small-modular-reactors

Why SMR?


From the U.S. Department of Energy*:

- Modularity
- Lower capital investment
- Siting flexibility
- Enhanced safety and security
- Greater efficiency
 - And other industrial applications such as hydrogen production, desalination plants, district heating
- Safeguards & security / nonproliferation

Nuclear history at a glance (U.S. DOE)

Gen IV reactors

- In September 2002, the Generation IV International Forum* selected six system concepts for further development:
 - Very High Temperature Reactor
 - Supercritical Water Cooled Reactor
 - Gas Cooled Fast Reactor
 - Lead Cooled Fast Reactor
 - Sodium Cooled Fast Reactor
 - Molten Salt ReactorGen IV
- Thorium can be used as fuel in fast breeder reactors, a number of solutions for thorium based reactors have been proposed and some are in operation.

Gen IV

- Advantages (different advantages for different types)
 - Much better exploitation of the fuel, waste problem reduced (not so long-lived)
 - Fast breeders can burn their own and other plants' waste
 - High temperature facilitates hydrogen production
 - Can be used for water desalination
 - Some operated on low pressures (atmospheric), better safety
 - Good safeguardability (non-proliferation)
- Some, e.g., gas-cooled reactors, have been in operation for years
- Some drawbacks
 - Uncertainty about safety, especially related to the materials
 - Economy of other normal reactors

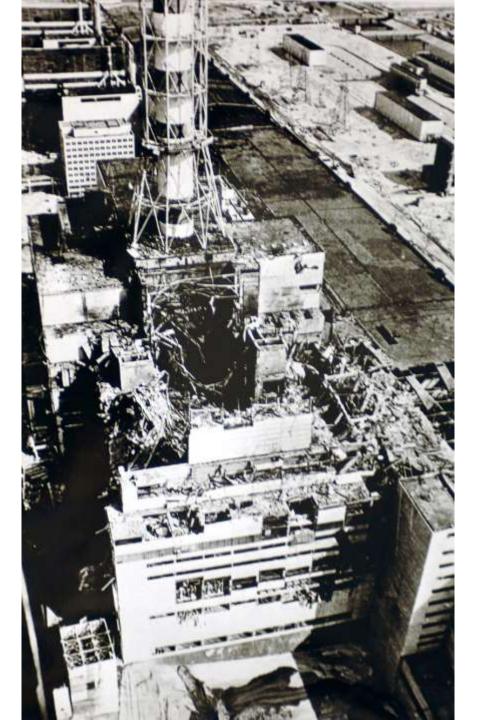
Nonproliferation

- Establishment of FFI (1946) and IFA (1948)
 - (Olav Njølstad: "Strålende forskning, Institutt for energiteknikk 1948-98")
- History of civilian and military nuclear power split from the 50s and 60s
 - in Norway already in 1947 when they decided to establish Institutt for Atomenergi (IFA) to run the nuclear projects
 - An industry (enrichment plants, etc) is required to make atomic bombs, however nuclear material may still be used for "dirty bombs"
- Nonproliferation are these days supervised by international organizations and treaties
 - Safeguards
- Possibilities are reduced by inherent design in many new reactors and SMRs
 - Thorium (linked to enrichment degree)
 - Molten salt (fuel embedded in the salt)

SMRs soon to be in operation

- Based on proven technology, typically light water
 - NuScale, many other developers
 - Small PWRs (pressurized water reactor)

12


- Chernobyl
- Three Mile Island, Fukushima
- Can these accidents happen in SMRs or in modern reactors?

Chernobyl 1986

Core meltdown and explosion during a safety test

(Picture: Wikipedia)

13 **IFE**

Causes of the Chernobyl accident

Many causes: Politics, safety culture

Underlying design:

- Positive void coefficient of reactivity
 - Moderator: graphite
 - Coolant: water
 - If cooling is lost by water heating up and evaporating, neutrons will still be moderated, and the chain reaction continues
 - This is improved in operating RBMKs after the Chernobyl accident
- A standard western plant has negative void coefficient
 - Uses water (liquid) both as coolant and moderator
 - If water evaporates, neutrons will not be moderated, and the chain reaction slows down

Three Mile Island 1979

Partial meltdown and release of radioactivity

(Picture: Wikipedia)

Causes of the TMI-2 (Harrisburg) accident

- Mechanical failures in the secondary system and a stuck relief valve
- Poorly designed Human-System-Interface, training, and procedures
 - "Human error", thought the situation was different from the actual situation
 - Teamwork: New eyes from a new crew found the cause and solution
 - Starting point for increased efforts in Human-Technology-Organisation research
- Underlying design:
 - Decay heat removal in big nuclear power plants (the reactor automatically tripped, stopping the nuclear chain reaction as supposed, but the accident developed in the hours afterwards)

16

Fukushima Daiichi 2011

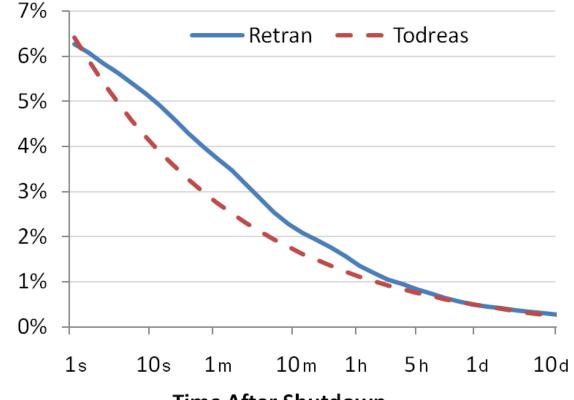
- Earthquake -> shutdown ok
- Tsunami -> cut the external power and flooded the emergency diesel generators
- No power to circulation pumps for cooling
- 3 nuclear meltdowns, 3 hydrogen explosions and release of radioactivity

(Picture: Wikipedia)

||-|-

Causes of the Fukushima Daiichi NPP accident

- Many causes: lack of risk assessment for flooding, etc. Safety culture?
- Some of the on-line accident handling was good, under extreme conditions
- Underlying design:
 - Decay heat removal in big nuclear power plants
 - Old design of core cooling after shutdown: active pumps, amounts of water etc



HALDEN PROJECT

Decay heat

- The core needs cooling for a long time after shutdown
- Old plants: Active water pumps, need power
 - From the external electricity net
 - Emergency diesel generators

- Defense-in-depth (several layers of barriers)
- Beyond design basis (BDB)
 - Fukushima: 15 meter high tsunami was defined as BDB

Time After Shutdown

From Wikipedia:

"Decay heat as fraction of full power for a reactor <u>SCRAMed</u> from full power at time 0, using two different correlations"

Decay heat removal, new solutions?

- Natural circulation
- Other passive systems, including large amounts of water available (sink core into water basins, etc)

SMRs: remove the decay heat problem by design

- Some of the new designs:
 - The shape and size of the reactor designed by worst case calculations of needed water and air for cooling all decay heat, without any power available

21

• -> 50-70 MW per unit

Advanced reactors, safety considerations

- U.S. NRC: "Risk-Informed and Performance-Based Human-System Considerations for Advanced Reactors" (March 2021):
 - Advanced reactors: including all non light water reactors (LWRs), SMRs, microreactors, fusion reactors
 - Safety attributes:
 - Inherent safety characteristics
 - Passive safety features
 - Automated safety systems
 - Manual operator actions

Challenges in the future

- More automation
 - Marketed as a safety feature
 - Is it really? How is the human-automation collaboration?
- Multi-unit
- Remote operation
- Unforeseen stuff, the black swan

SMR research questions (courtesy IFE team: Rob McDonald, Claire Blackett, Maren Eitrheim, Stine Strand)

Multi-user/multi-unit issues

- Unit confusion
- Variability and differences between units (similar or different)
- "Carry over" effects between units
- Multi unit disturbances (Situation Awareness and workload issues)
- Staffing

Remote operation issues

- Aspects of Latency
- Degrees of automated operation
- HMI presentation "local vs. remote"
- Psychological detachment, local vs remote
- Operators' familiarization and competence with differences between units

The Halden HTO Project and safety in SMRs

- Human Performance
 - Crew roles, teamwork, decision making under uncertainty
- Digital I&C Safety Assurance
 - How to license digital systems
- Control Room Design & Evaluation
 - CR validation and Human-system interfaces
- Human-Automation Collaboration
 - Higher degree of automation on SMRs, basic multi-unit questions
- Digital Systems for Maintenance and Operations
 - Condition monitoring and outage
- Digital Transformation of Decommissioning
 - Plans for decommissioning must be made at time of design
- Cyber Security for Main Control Rooms
 - Threats, detection and response, human behaviour during incident response

The Halden HTO Project and safety in SMRs

- Supported by experimental labs, HAMMLAB, VR-lab, robot lab, cyber lab
- SMR simulator

Halden Man-Machine Laboratory

Conclusions

- SMRs have inherent safety characteristics and passive safety features that makes them safer by design than traditional nuclear power plants
- There are still challenges to safety and operations
- IFE and the Halden HTO Project work on many of these challenges.

HALDEN PROJECT

IFE

.

OECD NEA Halden HTO Project ESRA 1 February 2022

Andreas.Bye@ife.no

Thanks!

Contact: Andreas.Bye@ife.no